All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimizing the thermal performance of the thermosyphon heat pipe for energy saving with graphene oxide nanofluid

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F23%3APU150567" target="_blank" >RIV/00216305:26210/23:PU150567 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0360544223008162?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0360544223008162?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.energy.2023.127422" target="_blank" >10.1016/j.energy.2023.127422</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimizing the thermal performance of the thermosyphon heat pipe for energy saving with graphene oxide nanofluid

  • Original language description

    A thermosyphon heat pipe (THP) involves a vacuum tube with a specific quantity of liquid. Due to its simplicity of design and structure, THP has many applications in heat recovery and renewable energy devices. Prior studies showed that using stable nanofluids can improve THPs' energy efficiency. In this evaluation, the effect of working fluid type, input heat, two types of surfactants, and nanoparticle concentration on the energy efficiency and thermal resistance of a THP was investigated and optimized. A magnetic stirrer and ultrasonic waves were used to create stability. Imaging and spectrophotometric analysis showed that graphene oxide (GO) nanofluid with SDS surfactant is more stable. The most notable decrease in thermal resistance at an input power of 100 W with GO nanofluids compared to distilled water at an F.R. of 50% was 12%. The highest decrease in the evap-orator temperature section was achieved with GO and SDS surfactant at a weight ratio of 0.3% wt, equal to 12.3 degrees C. This was also confirmed by measuring the contact angle. The highest percentage increase in thermal efficiency of THP with the mixture of GO nanoparticles and SDS surfactant in distilled water with 0.3 wt percent and input heat of 200 W was 18% compared to distilled water. In the optimum condition, the highest percentage increase in thermal efficiency of THP with the mixture of GO nanoparticles and SDS surfactant in distilled water with 0.3 wt percent and input heat of 200 W was 18% compared to distilled water.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20303 - Thermodynamics

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000456" target="_blank" >EF15_003/0000456: Sustainable Process Integration Laboratory (SPIL)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energy

  • ISSN

    0360-5442

  • e-ISSN

    1873-6785

  • Volume of the periodical

    neuveden

  • Issue of the periodical within the volume

    274

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    „“-„“

  • UT code for WoS article

    000982289600001

  • EID of the result in the Scopus database

    2-s2.0-85151874218