Algorithms for Conic Fitting Through Given Proper and Improper Waypoints in Geometric Algebra for Conics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU150228" target="_blank" >RIV/00216305:26210/24:PU150228 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00006-023-01308-5" target="_blank" >https://link.springer.com/article/10.1007/s00006-023-01308-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00006-023-01308-5" target="_blank" >10.1007/s00006-023-01308-5</a>
Alternative languages
Result language
angličtina
Original language name
Algorithms for Conic Fitting Through Given Proper and Improper Waypoints in Geometric Algebra for Conics
Original language description
As an addition to proper points of the real plane, we introduce a representation of improper points, i.e. points at infinity, in terms of Geometric Algebra for Conics (GAC) and offer possible use of both types of points. More precisely, we present two algorithms fitting a conic to a dataset with a certain number of points lying on the conic precisely, referred to as the waypoints. Furthermore, we consider inclusion of one or two improper waypoints, which leads to the asymptotic directions of the fitted conic. The number of used waypoints may be up to four and we classify all the cases.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Applied Clifford Algebras
ISSN
0188-7009
e-ISSN
1661-4909
Volume of the periodical
34
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
1-22
UT code for WoS article
001138653300001
EID of the result in the Scopus database
2-s2.0-85181733150