Description of jet like functors on vector bundles by means of module bundle functors on the bases
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU150397" target="_blank" >RIV/00216305:26210/24:PU150397 - isvavai.cz</a>
Result on the web
<a href="https://www.pmf.ni.ac.rs/filomat-content/2024/38-1/38-1-18-20303.pdf" target="_blank" >https://www.pmf.ni.ac.rs/filomat-content/2024/38-1/38-1-18-20303.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL2401241D" target="_blank" >10.2298/FIL2401241D</a>
Alternative languages
Result language
angličtina
Original language name
Description of jet like functors on vector bundles by means of module bundle functors on the bases
Original language description
Let C be an admissible category over manifolds and VBC be the category of vector bundles with bases being C-objects and vector bundle maps with base maps being C-maps. Assume that any C-morphism is a local isomorphism. We describe all jet like functors (i.e. fiber product preserving gauge bundle functors) of order r on VBC by means of Jr(-, R)-module bundle functors on C. Then we describe all jet like functors of vertical type of order r on VBC by means of vector bundle functors on C of order r. As an application we classify jet like functors of some type on VBm. Finally, we determine all natural Jr(M, R)-module bundle structures on the vector bundles JrE -* M and JrvE -* M, where E -* M is a vector bundle with m-dimensional basis and m >= 2.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FILOMAT
ISSN
0354-5180
e-ISSN
2406-0933
Volume of the periodical
38
Issue of the periodical within the volume
1
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
20
Pages from-to
241-260
UT code for WoS article
001077614700001
EID of the result in the Scopus database
2-s2.0-85173958529