Benchmarking Derivative-Free Global Optimization Methods on Variable Dimension Robotics Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU155645" target="_blank" >RIV/00216305:26210/24:PU155645 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/10611780" target="_blank" >https://ieeexplore.ieee.org/document/10611780</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC60901.2024.10611780" target="_blank" >10.1109/CEC60901.2024.10611780</a>
Alternative languages
Result language
angličtina
Original language name
Benchmarking Derivative-Free Global Optimization Methods on Variable Dimension Robotics Problems
Original language description
Several real-world applications introduce derivativefree optimization problems, called variable dimension problems, where the problem's dimension is not known in advance. Despite their importance, no unified framework for developing, comparing, and benchmarking variable dimension problems exists. The robot arm controlling problem is a variable dimension problem where the number of joints to optimize defines the problem's dimension. For a holistic study of global optimization methods, we studied 14 representative methods from 4 different categories, i.e., (i) local search optimization techniques with random restarts, (ii) state-of-the-art DIRECT-type methods, (iii) established Evolutionary Computation approaches, and (iv) state-of-the-art Evolutionary Computation approaches. To investigate the effect of the problem's dimensionality on the solution we generated 20 instances of various combinations among the number of predefined and open decision variables, and we performed experiments for various computational budgets. The results attest that the robot arm controlling problem provides a proper benchmark for variable dimensions. Furthermore, methods in-corporating local search techniques have dominant performance for higher dimensionalities of the problem, while state-of-the-art EC methods dominate in the lower dimensionalities.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA24-12474S" target="_blank" >GA24-12474S: Benchmarking derivative-free global optimization methods</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2024 IEEE Congress on Evolutionary Computation (CEC)
ISBN
979-8-3503-0836-5
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
„“-„“
Publisher name
IEEE
Place of publication
neuveden
Event location
Yokohama
Event date
Jun 30, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—