Positive periodic solutions to super-linear second-order ODEs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F25%3APU156288" target="_blank" >RIV/00216305:26210/25:PU156288 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.21136/CMJ.2024.0128-23" target="_blank" >https://link.springer.com/article/10.21136/CMJ.2024.0128-23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/CMJ.2024.0128-23" target="_blank" >10.21136/CMJ.2024.0128-23</a>
Alternative languages
Result language
angličtina
Original language name
Positive periodic solutions to super-linear second-order ODEs
Original language description
We study the existence and uniqueness of a positive solution to the problemu ''=p(t)u+q(t,u)u+f(t);u(0)=u(omega),u '(0)=u '(omega)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${u<^>{prime prime }} = p(t)u + q(t,u)u + f(t);,,,,,u(0) = u(omega ),,,,{u<^>prime }(0) = {u<^>prime }(omega )$$end{document}with a super-linear nonlinearity and a nontrivial forcing term f. To prove our main results, we combine maximum and anti-maximum principles together with the lower/upper functions method. We also show a possible physical motivation for the study of such a kind of periodic problems and we compare the results obtained with the facts well known for the corresponding autonomous case.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2025
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
1572-9141
Volume of the periodical
75
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
19
Pages from-to
257-275
UT code for WoS article
001196335100001
EID of the result in the Scopus database
2-s2.0-105001063549