Recurrent Neural Networks for Non-linear System Identification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F99%3A00000034" target="_blank" >RIV/00216305:26210/99:00000034 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Recurrent Neural Networks for Non-linear System Identification
Original language description
The contribution shows Elman neural network used for non-linear system identification. A simple example of non-linear dynamic system is used to test the performance of networks with different number of hidden units. Results shows that higher number of hidden neurons surprisingly degrades the performance of the network both in training and generalisation abilities.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JD - Use of computers, robotics and its application
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/VS96122" target="_blank" >VS96122: Resarch Laboratory for Mechatronic Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
1999
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Zeszyty naukowe katedry mechaniki stosowanej
ISSN
83-911764-0-1
e-ISSN
—
Volume of the periodical
1999
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
4
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—