Data adaptation for Hidden Markov Model in speech recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F02%3APU28123" target="_blank" >RIV/00216305:26220/02:PU28123 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Data adaptation for Hidden Markov Model in speech recognition
Original language description
In Hidden Markov models, speech data are modeled by Gaussian distributions. In this paper, we propose to Gaussianize the features to better fit to this modeling. A distribution of the data is estimated and a transform function is derived. We test three methods of the transform estimation (global, speaker based, frame based) and report results on the SPINE 2000 task with Sphinx recognizer. We conclude that the proposed method is a cheap way to increase the recognition accuracy.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JA - Electronics and optoelectronics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2002
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of 8th Conference STUDENT EEICT 2002
ISBN
80-214-2116-9
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
317-320
Publisher name
Neuveden
Place of publication
Brno
Event location
FEKT VUT Brno
Event date
Apr 25, 2002
Type of event by nationality
CST - Celostátní akce
UT code for WoS article
—