Generalized Predictive Control with a Non-linear Autoregressive Model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F05%3APU47654" target="_blank" >RIV/00216305:26220/05:PU47654 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Generalized Predictive Control with a Non-linear Autoregressive Model
Original language description
This paper presents a solution to computation of predictive control using non-linear auto-regressive models. For the non-linear model a neural network is used as a perspective tool for modelling of dynamic systems. However, the described approach is applicable to any type of auto-regressive model. The model is not linearized in the operating point, but in each control optimization step the model's derivative is computed (linearization) for all points in the prediction horizon. The method can be usedd inreal-time control. This is verified by porting the algorithm directly to the PLC.
Czech name
Prediktiví regulátor s nelineárním autpregresivním modelem
Czech description
Článek se zabývá výpočtem prediktivního regulátoru s použitím nelineárního autoregresivního modelu na bázi neuronové sítě. Použitý algoritmus pracuje v reálném čase.
Classification
Type
D - Article in proceedings
CEP classification
JB - Sensors, detecting elements, measurement and regulation
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Automatic Control Modeling and Simulation
ISBN
960-8457-12-2
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
85-89
Publisher name
WSEAS
Place of publication
Praha
Event location
Praha
Event date
Mar 13, 2005
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—