Generalized Predictive Control with a Non-linear Autoregressive Model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F05%3APU50363" target="_blank" >RIV/00216305:26220/05:PU50363 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Generalized Predictive Control with a Non-linear Autoregressive Model
Original language description
This paper presents a solution to computation of predictive control using non-linear auto-regressive models. For the non-linear model a neural network is used as a perspective tool for modelling of dynamic systems. However, the described approach is applicable to any type of auto-regressive model. The model is not linearized in the operating point, but in each control optimization step the model's derivative is computed (linearization) for all points in the prediction horizon. The method can be usedd inreal-time control. This is verified by porting the algorithm directly to the PLC.
Czech name
Prediktivní řízení s nelineárním autoregresivním modelem.
Czech description
Článek se zabývá možnostmi použití neuronových sítí v prediktivních řídicích algoritmech.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2005
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
WSEAS Transactions on Circuits
ISSN
1109-2734
e-ISSN
—
Volume of the periodical
2005
Issue of the periodical within the volume
3
Country of publishing house
GR - GREECE
Number of pages
6
Pages from-to
125-130
UT code for WoS article
—
EID of the result in the Scopus database
—