The compactificability of certain spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F06%3APU64010" target="_blank" >RIV/00216305:26220/06:PU64010 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The compactificability of certain spaces
Original language description
We apply the theory of the mutual compactificability to some spaces, mostly derived from the real line. For example, any noncompact locally connected metrizable generalized continuum, the Tichonov cube without its zero point as well as the Cantor discontinuum without its zero point are of the same class of mutual compactificability as R.
Czech name
Třídy vzájemné kompaktifikovatelnosti jistých prostorů
Czech description
Aplikujeme teorii vzájemné kompaktifikovatelnosti na jisté prostory, konstruované především z reálné přímky.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Mathematics and Mathematical Sciences
ISSN
0161-1712
e-ISSN
—
Volume of the periodical
2006
Issue of the periodical within the volume
Article ID
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
17
Pages from-to
1-17
UT code for WoS article
—
EID of the result in the Scopus database
—