Particle Filter Based Algorithm for Personal Tracking
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F10%3APU88672" target="_blank" >RIV/00216305:26220/10:PU88672 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Particle Filter Based Algorithm for Personal Tracking
Original language description
This paper deals with personal localization and tracking. Particle filter is the backbone of our algorithm. This filter is fusing the system dynamics model dead reckoning solution based on pedometer and velocity motion model with a maximum likelihood estimator (MLE) output. MLE uses the range measurements (received signal strength methodology) and the infrastructure of reference nodes with known position.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GD102%2F09%2FH081" target="_blank" >GD102/09/H081: SYNERGY - Mobile Sensoric Systems and Networks</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Annals of Daaam for 2009 & Proceedings
ISBN
978-3-901509-73-5
ISSN
—
e-ISSN
—
Number of pages
2
Pages from-to
—
Publisher name
DAAAM International Viena
Place of publication
TU Wien, Karlsplatz 13/311, A-1040 Vienna, Austr
Event location
Zadar
Event date
Oct 20, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—