All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Performance improvement on LiFePO4/C composite cathode for lithium-ion batteries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F13%3APU103679" target="_blank" >RIV/00216305:26220/13:PU103679 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Performance improvement on LiFePO4/C composite cathode for lithium-ion batteries

  • Original language description

    Temperature glycine assisted solid-state synthesis was used to prepare LiFePO4/C composite samples with two types of material improvements. It will be shown how can addition of a high conductive support as well as doping with supervalent metal ions improve the electrochemical performance of Li-ion cathode. Three samples with different properties were prepared and investigated – pure LiFePO4/C with no material improvements, LiFePO4/C prepared with multi walled carbon nanotubes (MWCNT) conductive support and LiFePO4/C doped by 1% of cobalt. Glycine was used as inorganic carbon coating precursor during the synthesis of all samples. XRD measurements confirmed production of highly crystalline LiFePO4 cathode material with diameter varying between 40 nm and 200 nm. Electrochemical measurements confirmed increasing the intra-particle conductivity by MWCNT or Co doping. Galvanostatic battery testing shows that LiFePO4/MWCNT/C composite delivers highest capacity 130 mA h 1/g at C/5. LiFePO4/MWCNT/C cathode material prepared by solid state synthesis exhibit excellent electrochemical performances, improved conductivity, and good rate capability compared to the LiFePO4/C composite material.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CG - Electrochemistry

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    SOLID STATE SCIENCES

  • ISSN

    1293-2558

  • e-ISSN

  • Volume of the periodical

    20

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    5

  • Pages from-to

    110-114

  • UT code for WoS article

  • EID of the result in the Scopus database