IMMI: Interactive Segmentation Toolkit
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F13%3APU104757" target="_blank" >RIV/00216305:26220/13:PU104757 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-41013-0_39" target="_blank" >http://dx.doi.org/10.1007/978-3-642-41013-0_39</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-41013-0_39" target="_blank" >10.1007/978-3-642-41013-0_39</a>
Alternative languages
Result language
angličtina
Original language name
IMMI: Interactive Segmentation Toolkit
Original language description
General image segmentation is a non–trivial task, which requires significant computational power and huge amount of knowledge incorporated. Fortunately, it is not necessary in all the cases. In some specific cases, simpler non–supervised or supervised segmentation methods can be used giving even better results. In this paper, a novel trainable segmentation method based on RapidMiner data–mining platform is introduced, and its functionality is described. The method implementation was released under open–source license as a part of IMMI (IMage MIning) extension of the RapidMiner platform. When compared to other trainable segmentation algorithms, the platform provides flexibility connected with all the features of one of the most widely used data–mining platform today. The functionality has been verified on the satellite image use–case, accuracy achieving 78.3% pixel error.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/FR-TI4%2F151" target="_blank" >FR-TI4/151: Research and development of technology for machine emotion detection in unstructured data</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Engineering Applications of Neural Networks
ISBN
978-3-642-41012-3
ISSN
1865-0929
e-ISSN
—
Number of pages
510
Pages from-to
380-387
Publisher name
Springer Berlin Heidelberg
Place of publication
Heidelberg
Event location
Halkidiki
Event date
Sep 13, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—