All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

IMMI: Interactive Segmentation Toolkit

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F13%3APU104757" target="_blank" >RIV/00216305:26220/13:PU104757 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-41013-0_39" target="_blank" >http://dx.doi.org/10.1007/978-3-642-41013-0_39</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-41013-0_39" target="_blank" >10.1007/978-3-642-41013-0_39</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    IMMI: Interactive Segmentation Toolkit

  • Original language description

    General image segmentation is a non–trivial task, which requires significant computational power and huge amount of knowledge incorporated. Fortunately, it is not necessary in all the cases. In some specific cases, simpler non–supervised or supervised segmentation methods can be used giving even better results. In this paper, a novel trainable segmentation method based on RapidMiner data–mining platform is introduced, and its functionality is described. The method implementation was released under open–source license as a part of IMMI (IMage MIning) extension of the RapidMiner platform. When compared to other trainable segmentation algorithms, the platform provides flexibility connected with all the features of one of the most widely used data–mining platform today. The functionality has been verified on the satellite image use–case, accuracy achieving 78.3% pixel error.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/FR-TI4%2F151" target="_blank" >FR-TI4/151: Research and development of technology for machine emotion detection in unstructured data</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Engineering Applications of Neural Networks

  • ISBN

    978-3-642-41012-3

  • ISSN

    1865-0929

  • e-ISSN

  • Number of pages

    510

  • Pages from-to

    380-387

  • Publisher name

    Springer Berlin Heidelberg

  • Place of publication

    Heidelberg

  • Event location

    Halkidiki

  • Event date

    Sep 13, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article