All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Local Structure Prediction with Convolutional Neural Networks for Multimodal Brain Tumor Segmentation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F15%3APU115017" target="_blank" >RIV/00216305:26220/15:PU115017 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-42016-5_6" target="_blank" >http://dx.doi.org/10.1007/978-3-319-42016-5_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-42016-5_6" target="_blank" >10.1007/978-3-319-42016-5_6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Local Structure Prediction with Convolutional Neural Networks for Multimodal Brain Tumor Segmentation

  • Original language description

    Most medical images feature a high similarity in the intensities of nearby pixels and a strong correlation of intensity profiles across different image modalities. One way of dealing with - and even exploiting - this correlation is the use of local image patches. In the same way, there is a high correlation between nearby labels in image annotation, a feature that has been used in the "local structure prediction" of local label patches. In the present study we test this local structure prediction approach for 3D segmentation tasks, systematically evaluating different parameters that are relevant for the dense annotation of anatomical structures. We choose convolutional neural network as learning algorithm, as it is known to be suited for dealing with correlation between features. We evaluate our approach on the public BRATS2014 data set with three multimodal segmentation tasks, being able to obtain state-of-the-art results for this brain tumor segmentation data set consisting of 254 multimodal volumes with computing time of only 13 seconds per volume.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LD14091" target="_blank" >LD14091: Primary and soft biometric and non-biometric traits in the de-identification process of audio-visual content in multimedia data</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Lecture Notes in Computer Science

  • ISSN

    0302-9743

  • e-ISSN

  • Volume of the periodical

    8965

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    000389404000006

  • EID of the result in the Scopus database