Local Structure Prediction with Convolutional Neural Networks for Multimodal Brain Tumor Segmentation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68081731%3A_____%2F16%3A00507004" target="_blank" >RIV/68081731:_____/16:00507004 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-42016-5_6" target="_blank" >http://dx.doi.org/10.1007/978-3-319-42016-5_6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-42016-5_6" target="_blank" >10.1007/978-3-319-42016-5_6</a>
Alternative languages
Result language
angličtina
Original language name
Local Structure Prediction with Convolutional Neural Networks for Multimodal Brain Tumor Segmentation
Original language description
Most medical images feature a high similarity in the intensities of nearby pixels and a strong correlation of intensity profiles across different image modalities. One way of dealing with - and even exploiting - this correlation is the use of local image patches. In the same way, there is a high correlation between nearby labels in image annotation, a feature that has been used in the ´local structure predictiol´of local label patches. In the present study we test this local structure prediction approach for 3D segmentation tasks, systematically evaluating different parameters that are relevant for the dense annotation of anatomical structures. We choose convolutional neural network as learning algorithm, as it is known to be suited for dealing with correlation between features. We evaluate our approach on the public BRATS2014 data set with three multimodal segmentation tasks, being able to obtain state-of-the-art results for this brain tumor segmentation data set consisting of 254 multimodal volumes with computing time of only 13s per volume
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
30210 - Clinical neurology
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science
ISBN
978-3-319-42015-8
ISSN
0302-9743
e-ISSN
—
Number of pages
13
Pages from-to
59-71
Publisher name
Springer
Place of publication
Cham
Event location
Munich
Event date
Oct 9, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000389404000006