ECG signal classification based on SVM
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU119056" target="_blank" >RIV/00216305:26220/16:PU119056 - isvavai.cz</a>
Result on the web
<a href="http://www.feec.vutbr.cz/EEICT/2016/sbornik/EEICT-2016-sborn%C3%ADk-komplet.pdf" target="_blank" >http://www.feec.vutbr.cz/EEICT/2016/sbornik/EEICT-2016-sborn%C3%ADk-komplet.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ECG signal classification based on SVM
Original language description
Cardiovascular diseases nowadays represent the most common cause of death in Western countries. Long-term ECG recording is modern method, because it allows to detect sporadically occurring pathology. We designed an automatic classifier to detect five pathologies (AAMI standard) by SVM method. The classifier was tested on the entire MIT-BIH Arrhythmia Database with an accuracy of 99.17 %. We also compared the quality of parameters entering the classifier.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
20204 - Robotics and automatic control
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů