Weakly Delayed Difference Systems in $R^3$
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU121090" target="_blank" >RIV/00216305:26220/16:PU121090 - isvavai.cz</a>
Result on the web
<a href="http://mitav.unob.cz/" target="_blank" >http://mitav.unob.cz/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Weakly Delayed Difference Systems in $R^3$
Original language description
The paper is concerned with weakly delayed difference system $x(k+1) = Ax(k) + Bx(k-1)$ where k = 0, 1, ... and $A = (a_{ij})_{i,j=1}^{3}$, $B = (b_{ij})_{i,j=1}^{3}$ are constant matrices. We solve this system utilizing a Putzer algorithm.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
MITAV 2016 (Matematika, informační technologie a aplikované vědy)
ISBN
978-80-7231-464-5
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
1-8
Publisher name
Univerzita obrany v Brně
Place of publication
Brno
Event location
Brno
Event date
Jun 16, 2016
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—