Weakly Delayed Difference Systems in ${mathbb R^3$ and their Solution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU122560" target="_blank" >RIV/00216305:26220/16:PU122560 - isvavai.cz</a>
Result on the web
<a href="http://mitav.unob.cz/" target="_blank" >http://mitav.unob.cz/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Weakly Delayed Difference Systems in ${mathbb R^3$ and their Solution
Original language description
The paper is concerned with a weakly delayed difference system $$x(k+1) = Ax(k) + Bx(k-1)$$ where $k = 0, 1, dots$ and $A = (a_{ij})_{i,j=1}^{3}$, $B = (b_{ij})_{i,j=1}^{3}$ are constant matrices. It is demonstrated that the initial delayed system can be transformed into a linear system without delay and, moreover, that all the eigenvalues of the matrix of the linear terms of this system can be obtained as the union of all the eigenvalues of matrices $A$ and $B$. In such a case, the new linear system without delay can be solved easily, e.g., by utilizing the well-known Putzer algorithm with one of the possible cases being considered in the paper.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
MITAV 2016 (Matematika, informační technologie a aplikované vědy), Post-conference proceedings of extended versions of selected papers
ISBN
978-80-7231-400-3
ISSN
—
e-ISSN
—
Number of pages
21
Pages from-to
84-104
Publisher name
Univerzita obrany v Brně
Place of publication
Brno
Event location
Brno
Event date
Jun 16, 2016
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
000391451200007