All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

INFLUENCE OF SURFACE MODIFICATION ON CdTe QDs STABILITY

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU136029" target="_blank" >RIV/00216305:26220/17:PU136029 - isvavai.cz</a>

  • Alternative codes found

    RIV/62156489:43210/16:43911135

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    INFLUENCE OF SURFACE MODIFICATION ON CdTe QDs STABILITY

  • Original language description

    Quantum dots (QDS), which belong to the group of nanostructures, have great potential for use in many applications, technical, biological and medical. Despite of their great potential, there is an enormous disadvantage for quantum dots containing some metalloid elements and heavy metals especially. This disadvantage is caused by the gradual release of metal ions and instability of QDs under various conditionin. Covering QDs by various modifiers is usually used for QDs stabilization and decrease of heavy metals ions release. The accomplishment of desired effect and efficiency of QDs modifications is questionable [cit?]. In the present study, ODs stability via their fluorescent properties, size and release of cadmium ions were studied. To measure the release of Cd2+ from the core of QDs an electrochemical method, differential pulse voltammetry (DPV), was used. Study conducted in mildly alkaline pH, which was close to the actual pH of QDs was performed. Four types of CdTe based QDs were used: MPA - CdTe (mercaptopropionic acid), MSA - CdTe (mercaptosuccinic acid), GSH - CdTe (glutathione), CdTe / ZnSe (core/shell). During 14 days period measurement of fluorescence, zeta potential and release of Cd2+ ions from QDs in two alkaline buffers were performed. Fist was phosphate buffer pH 7.6 and and further used a special neutral buffer pH 7.6, which simulated the cellular environment. From these data the stability of given modified and core shell QDs were assessed. At the end of the study it was found that CdTe / ZnSe core shell QDs maintain high fluorescence values together with the lowest released cadmium ions concentration.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10402 - Inorganic and nuclear chemistry

Result continuities

  • Project

    <a href="/en/project/LO1401" target="_blank" >LO1401: Interdisciplinary Research of Wireless Technologies</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2016

  • ISBN

    978-80-87294-71-0

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    638-642

  • Publisher name

    Neuveden

  • Place of publication

    Neuveden

  • Event location

    Brno

  • Event date

    Oct 19, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000410656100111