Automated Detection of Endogenous Viral Elements in Host Genomes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU126368" target="_blank" >RIV/00216305:26220/18:PU126368 - isvavai.cz</a>
Result on the web
<a href="https://pag.confex.com/pag/xxvi/meetingapp.cgi/Paper/31074" target="_blank" >https://pag.confex.com/pag/xxvi/meetingapp.cgi/Paper/31074</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Automated Detection of Endogenous Viral Elements in Host Genomes
Original language description
Endogenous Viral Elements (EVEs) are part of the host genome and allow horizontal transmission within a host, but the underlying evolutionary mechanisms are still unclear. Metagenomic sequencing data sets contain a wealth of information, including sequences from viruses. Such datasets present an opportunity to analyze known EVEs and discover new ones. We introduce a new method for extending viral contiguous sequences or contigs through the Building Up Domains (BUD) algorithm (https://github.com/NCBI-Hackathons/ViruSpy) that identifies virus DNA from sequencing experiments. This methodology differs from current virus discovery tools by iteratively building upon sequences that are known to contain a viral protein domains, and searching for surrounding non-viral protein domains. We designed EndoVir (https://github.com/NCBI-Hackathons/endovir) to implement BUD in Python3. To reduce the use of temporary files, data is streamed between processes where possible, e.g. we use MagicBLAST to screen the metageno
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10606 - Microbiology
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů