All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Assessment of ECG Signal Quality After Compression

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU127905" target="_blank" >RIV/00216305:26220/18:PU127905 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.springer.com/us/book/9789811090226" target="_blank" >https://www.springer.com/us/book/9789811090226</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-10-9038-7_31" target="_blank" >10.1007/978-981-10-9038-7_31</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Assessment of ECG Signal Quality After Compression

  • Original language description

    Highly efficient lossy compression algorithms for ECG signals are connected with distortion of the signals; lossy compression is a compromise between compression efficiency and signal quality. It is recommended to express this relation using rate-distortion curve. To decide whether the signal is suitable for further analysis, it is necessary to assess its quality after reconstruction. Although there exist many methods for quality assessment, neither of them is standardized or unified. The methods usually do not offer any information about their acceptable values. This paper introduces 10 new methods for signal quality assessment and their limits. Four methods are simple (entropy, mean, median, spectra similarity), two are based on delineation of ECG (SiP, SiPA), and four combine dynamic time warping, delineation, and calculation of distance (DTWdist, DTWpmfp1, DTWpmfp2, pmfp). These methods are tested on the whole standard CSE database using compression algorithm based on wavelet transform and set partitioning in hierarchical trees. The signals were compressed with various efficiency expressed by average value length (avL). Two ECG experts divided the compressed signals into three quality groups: perfect quality, good quality, not evaluable ECG. Owing to the experts’ ECG classification, we set the range of avL for each quality group. Based on this, we determined corresponding ranges of new methods’ values. Based on the trend of rate-distortion curve, its sensitivity, variability, their ratio at important boundary avL = 0.8 bps, and computational demand of the methods, we recommend four methods for further use.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    World Congress on Medical Physics and Biomedical Engineering 2018

  • ISBN

    978-981-10-9038-7

  • ISSN

    1680-0737

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1-5

  • Publisher name

    Springer Singapore

  • Place of publication

    Praha

  • Event location

    Prague

  • Event date

    Jun 3, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000449742700031