All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep convolutional networks for OCT image classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU131972" target="_blank" >RIV/00216305:26220/19:PU131972 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep convolutional networks for OCT image classification

  • Original language description

    In this work, OCT (optical coherence tomography) images are classified according to the present pathology into four distinct categories. Three different neural network models are used to classify images, each model is recent and we are achieving exceptional results on the testing dataset, which was unknown to the network during the training. Accuracy on the testing set is higher than 98% and only a few of images are classified into the wrong category. This makes our approach perspective for future automatic use. To further improve results, all three models are using transfer learning.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 25th Conference STUDENT EEICT 2019

  • ISBN

    978-80-214-5735-5

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    437-442

  • Publisher name

    Vysoké učení technické vBrně, Fakulta elektrotechniky a komunikačních technologií

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Apr 26, 2018

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article