Optimal Design of Timed Antenna Arrays for SLL Reduction, Dual and Multiple Broad Nulls in the Radiation Pattern
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137087" target="_blank" >RIV/00216305:26220/20:PU137087 - isvavai.cz</a>
Result on the web
<a href="https://www.tandfonline.com/doi/full/10.1080/02564602.2019.1699453" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/02564602.2019.1699453</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/02564602.2019.1699453" target="_blank" >10.1080/02564602.2019.1699453</a>
Alternative languages
Result language
angličtina
Original language name
Optimal Design of Timed Antenna Arrays for SLL Reduction, Dual and Multiple Broad Nulls in the Radiation Pattern
Original language description
This work is concerned with the methodology for improvement of the radiation pattern performance and eliminating the effect of unwanted interference of symmetric time modulated linear antenna array (STMLAA) in the predefined direction. This is achieved using evolutionary technique called Novel Particle Swarm Optimization with Wavelet Mutation (NPSOWM) for various application specific optimization like SLL only reduction, dual broad null and multiple broad null optimization. The optimized results obtained by using NPSOWM are validated by CST-MWS by captivating practical elements of dipole antenna and its array configuration. The numerical results show the effect of the particular (practical) antenna on the array. Various examples have taken for this purpose. A set of 16-element antenna array have designed for SLL only reduction. 16-, 32-, and 64-element STMLAA for incorporating the dual broad nulls in the angular range from 400 to 700 over the elevation plane. A set of 24-, 30-, and 32-element antenna array have occupied for multiple broad nulls. The strength of the adopted algorithm is tested for different number of array antenna configuration, which establish the efficacy of the optimization technique NPSOWM adopted for achieving the interference cancellation in the predefined direction and performance improvement of the antenna array such as simultaneous improvements of broad nulls (BNs), sidelobe level (SLL), sideband level (SBL), and the directivity. From the simulated results it is clear that NPSOWM can perform better than that of un-optimized linear antenna array with respect to BNs, SLL, and SBLs and Directivity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20202 - Communication engineering and systems
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India)
ISSN
0256-4602
e-ISSN
0974-5971
Volume of the periodical
37
Issue of the periodical within the volume
1
Country of publishing house
IN - INDIA
Number of pages
10
Pages from-to
1-10
UT code for WoS article
000505094900001
EID of the result in the Scopus database
—