GPON PLOAMd Message Analysis Using Supervised Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137814" target="_blank" >RIV/00216305:26220/20:PU137814 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2076-3417/10/22/8139/htm" target="_blank" >https://www.mdpi.com/2076-3417/10/22/8139/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app10228139" target="_blank" >10.3390/app10228139</a>
Alternative languages
Result language
angličtina
Original language name
GPON PLOAMd Message Analysis Using Supervised Neural Networks
Original language description
This paper discusses the possibility of analyzing the orchestration protocol used in gigabit-capable passive optical networks (GPONs). Considering the fact that a GPON is defined by the International Telecommunication Union Telecommunication sector (ITU-T) as a set of recommendations, implementation across device vendors might exhibit few differences, which complicates analysis of such protocols. Therefore, machine learning techniques are used (e.g., neural networks) to evaluate differences in GPONs among various device vendors. As a result, this paper compares three neural network models based on different types of recurrent cells and discusses their suitability for such analysis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20203 - Telecommunications
Result continuities
Project
<a href="/en/project/VI20192022135" target="_blank" >VI20192022135: Deep hardware detection of network traffic of next generation passive optical network in critical infrastructures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Sciences - Basel
ISSN
2076-3417
e-ISSN
—
Volume of the periodical
10
Issue of the periodical within the volume
22
Country of publishing house
CH - SWITZERLAND
Number of pages
12
Pages from-to
1-12
UT code for WoS article
000594226700001
EID of the result in the Scopus database
2-s2.0-85096224948