All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unsupervised Anomaly Detection Using Bidirectional GRU Autoencoder Neural Network for PLOAM Message Sequence Analysis in GPON

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146405" target="_blank" >RIV/00216305:26220/22:PU146405 - isvavai.cz</a>

  • Alternative codes found

    RIV/63839172:_____/22:10133475

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9988508" target="_blank" >https://ieeexplore.ieee.org/document/9988508</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICECCME55909.2022.9988508" target="_blank" >10.1109/ICECCME55909.2022.9988508</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unsupervised Anomaly Detection Using Bidirectional GRU Autoencoder Neural Network for PLOAM Message Sequence Analysis in GPON

  • Original language description

    This paper proposes an autoencoder neural network based on bidirectional gated recurrent unit layers used for anomaly detection in sequences of management protocol messages in gigabit-capable passive optical networks (GPONs). The autoencoder uses unsupervised learning, and the learning dataset is acquired from the real GPON network using a custom-made analyzer. The anomaly detection focuses on deviations in the management protocol in comparison to the baseline. It may indicate changes in the protocol itself caused by a different protocol implementation or a potential attack on the network. The capabilities of a trained autoencoder are evaluated on a generated dataset with various types of anomalies. The autoencoder reaches an average accuracy of 66% across all types of generated anomalies. However, the detection accuracy of sequences containing a high amount of random noise is 100%.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME 2022)

  • ISBN

    978-1-6654-7095-7

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    1-5

  • Publisher name

    Institute of Electrical and Electronics Engineers (IEEE)

  • Place of publication

    Malé, Maldives

  • Event location

    Male

  • Event date

    Nov 16, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article