All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cell Segmentation in Quantitative Phase Images with Improved Iterative Thresholding Method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137881" target="_blank" >RIV/00216305:26220/20:PU137881 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-64610-3_27" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-64610-3_27</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-64610-3_27" target="_blank" >10.1007/978-3-030-64610-3_27</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cell Segmentation in Quantitative Phase Images with Improved Iterative Thresholding Method

  • Original language description

    Quantitative Phase Imaging (QPI) is a label-free microscopic technique, which provides images with high contrast, moreover, it provides quantitative cell mass measurements for each pixel. Segmentation of particular cells is an important step in the analysis of QPI image data. This paper presents a method for automatic cell segmentation in QPI images. The proposed method improves iterative thresholding, which is a very promising method, however, it is not able to segment densely clustered cells. Our improved iterative thresholding includes two additional steps -- Laplacian of Gaussian image enhancement and distance transform-based splitting. The method was compared with original iterative thresholding and another method on two cell lines, where the proposed method successfully deals with a densely clustered type of cells and achieves significantly better results on both datasets

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

    <a href="/en/project/GA18-24089S" target="_blank" >GA18-24089S: Quantitative phase microscopy for 3D qualitative characterization of cancer cells</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    EMBEC 2020, IFMBE Proceedings vol. 80

  • ISBN

    978-3-030-64609-7

  • ISSN

    1680-0737

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    233-239

  • Publisher name

    Springer Nature Switzerland AG 2021

  • Place of publication

    Switzerland

  • Event location

    Portorož

  • Event date

    Nov 29, 2020

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article