All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Reducing Memory Requirements of Convolutional Neural Networks for Inference at the Edge

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140667" target="_blank" >RIV/00216305:26220/21:PU140667 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9420214" target="_blank" >https://ieeexplore.ieee.org/document/9420214</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/RADIOELEKTRONIKA52220.2021.9420214" target="_blank" >10.1109/RADIOELEKTRONIKA52220.2021.9420214</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Reducing Memory Requirements of Convolutional Neural Networks for Inference at the Edge

  • Original language description

    The main focus of this paper is to use post training quantization to analyse the influence of using lower precision data types in neural networks, while avoiding the process of retraining the networks in question. The main idea is to enable usage of high accuracy neural networks in devices other than high performance servers or super computers and bring the neural network compute closer to the device collecting the data. There are two main issues with using neural networks on edge devices, the memory constraint and the computational performance. Both of these issues could be diminished if the usage of lower precision data types does not considerably reduce the accuracy of the networks in question.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    International Conference Radioelektronika 2021

  • ISBN

    978-0-7381-4436-8

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1-6

  • Publisher name

    Vysoké učení technické v Brně

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Apr 19, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000676146400023