Reducing Memory Requirements of Convolutional Neural Networks for Inference at the Edge
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU140667" target="_blank" >RIV/00216305:26220/21:PU140667 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/9420214" target="_blank" >https://ieeexplore.ieee.org/document/9420214</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/RADIOELEKTRONIKA52220.2021.9420214" target="_blank" >10.1109/RADIOELEKTRONIKA52220.2021.9420214</a>
Alternative languages
Result language
angličtina
Original language name
Reducing Memory Requirements of Convolutional Neural Networks for Inference at the Edge
Original language description
The main focus of this paper is to use post training quantization to analyse the influence of using lower precision data types in neural networks, while avoiding the process of retraining the networks in question. The main idea is to enable usage of high accuracy neural networks in devices other than high performance servers or super computers and bring the neural network compute closer to the device collecting the data. There are two main issues with using neural networks on edge devices, the memory constraint and the computational performance. Both of these issues could be diminished if the usage of lower precision data types does not considerably reduce the accuracy of the networks in question.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20202 - Communication engineering and systems
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
International Conference Radioelektronika 2021
ISBN
978-0-7381-4436-8
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
1-6
Publisher name
Vysoké učení technické v Brně
Place of publication
Brno
Event location
Brno
Event date
Apr 19, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000676146400023