All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

GPON ATTACKS AND ERRORS CLASSIFICATION

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU141219" target="_blank" >RIV/00216305:26220/21:PU141219 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf" target="_blank" >https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2021_sbornik_1.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    GPON ATTACKS AND ERRORS CLASSIFICATION

  • Original language description

    This paper focuses on various types of attacks and errors in an activation process of Gigabit-capable passive optical networks. The process sends messages via Physical Layer Operation Administration and Maintenance header field inside the transmitted frame. An exemplar network communication is captured by a special hardware-accelerated network interface card capable of processing optical signals from passive optical networks. The captured data is filtered of irrelevant parts and messages and correctly formatted into a suitable shape for a neural network. The filtered data is divided into small sequences called time windows and analyzed using a recurrent neural network-based on Gated recurrent unit cells. A new neural network model is designed to classify sequences into several categories: additional message, missing message, error inside (noisy) message, and message order error. All of these categories represent a certain type of attack or error. The proposed model can distinguish message sequences in

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20203 - Telecommunications

Result continuities

  • Project

    <a href="/en/project/VI20192022135" target="_blank" >VI20192022135: Deep hardware detection of network traffic of next generation passive optical network in critical infrastructures</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů