Metal-organic framework for stable cyclability of Li-S batteries for space missions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU147854" target="_blank" >RIV/00216305:26220/21:PU147854 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Metal-organic framework for stable cyclability of Li-S batteries for space missions
Original language description
The chemistry and technology of batteries are one of the key factors limiting the performance of satellites, space stations and vehicles in many space missions. Energy storage systems in space applications have to be able to operate in extreme environmental conditions, including pressure, temperature and radiation. In the space industry, it is favourable to take benefit of the latest and best battery technology. Long life cycle performance is necessary to carry out lengthy programmes. Lithium-sulphur batteries are regarded as one of the promising technologies for next-generation batteries due to their high theoretical capacity, energy density, the abundant and low-cost sulphur resources. However, lithium-sulphur batteries have some limitations which have to be solved before commercial application. One of the main shortcomings is the shuttle effect of lithium polysulphides during cycling. Polysulphide shuttle can be suppressed by application of porous matrix in the cathode material. In the proposed approach, the metal-organic framework MOF-76(Gd) was applied as a support for sulphur in lithium-sulphur batteries. MOF-76(Gd) as a porous and conductive part of cathode material shows successful sulphur capture and encapsulation. Sulphur encapsulation was accompanied by stable cycle performance and high efficiency. Consequently, the cathode material displayed a high initial discharge capacity of 687.4 mAh g-1 (3.42 mAh) at 0.5 C, and after 50 cycles, the capacity reached 104 % of the original value.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
IAC: Proceedings of the International Astronautical Congress
ISBN
9781713843092
ISSN
0074-1795
e-ISSN
—
Number of pages
4
Pages from-to
1-4
Publisher name
International Astronautical Federation, IAF
Place of publication
neuveden
Event location
Dubai
Event date
Oct 25, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—