All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

DEEP NEURAL NETWORK FOR AUTONOMOUS UAV NAVIGATION

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F21%3APU148413" target="_blank" >RIV/00216305:26220/21:PU148413 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2021_sbornik_2_v3_DOI.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2021_sbornik_2_v3_DOI.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13164/eeict.2021.17" target="_blank" >10.13164/eeict.2021.17</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    DEEP NEURAL NETWORK FOR AUTONOMOUS UAV NAVIGATION

  • Original language description

    The project deals with autonomous drone control. A neural network is used to create autonomous control for object recognition. This recognition is performed with a ground station, where the computer evaluates the position of the drone and autonomously controls the flight of the drone through the detection of objects.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20200 - Electrical engineering, Electronic engineering, Information engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    PROCEEDINGS II OF THE 27TH STUDENT EEICT 2021 selected papers

  • ISBN

    978-80-214-5943-4

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    17-20

  • Publisher name

    Brno University of Technology, Faculty of Electrical Engineering and Communication

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Apr 27, 2021

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article