Vanishing solutions of a second-order discrete non-linear equation of Emden-Fowler type.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144797" target="_blank" >RIV/00216305:26220/22:PU144797 - isvavai.cz</a>
Result on the web
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1_v2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1_v2.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Vanishing solutions of a second-order discrete non-linear equation of Emden-Fowler type.
Original language description
The paper discusses a discrete equation of an Emden-Fowler type $Delta^2 v(k) = -k^3(Delta v(k))^3$, where $v$ is a dependent variable, $k$ is an integer-valued independent variable, $Delta$ v and $Delta^2 v$ are the first and second-order forward differences of $v$, respectively. The paper aims to prove the existence of a nontrivial and vanishing solution for $k to infty$. The equation is transformed into a system of two first-order difference equations, which makes it possible to apply previously known results when investigating the system.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů