ON ANALOGUE OF BLOW-UP SOLUTIONS FOR A DISCRETE VARIANT OF SECOND–ORDER EMDEN–FOWLER DIFFERENTIAL EQUATION
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU144941" target="_blank" >RIV/00216305:26220/22:PU144941 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
ON ANALOGUE OF BLOW-UP SOLUTIONS FOR A DISCRETE VARIANT OF SECOND–ORDER EMDEN–FOWLER DIFFERENTIAL EQUATION
Original language description
A nonlinear second-order discrete equation of Emden--Fowler type $$ Delta^2 v(k) = - k^s left(Delta v(k)right)^3 $$ is studied for $kto infty$, where $snot= 1$ is a real number, $v$ is an unknown function, $Delta v(k) = v(k+1) - v(k)$, and $Delta^2 v(k) = v(k+2) - 2v(k+1)+v(k)$. This equation is a discrete analogue of Emden-Fowler second-order differential equation $$ y''(x) = y^s(x), $$ having non-continuable blow--up solutions.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů