All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep Learning Pipeline for Chromosome Segmentation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU145357" target="_blank" >RIV/00216305:26220/22:PU145357 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9764950" target="_blank" >https://ieeexplore.ieee.org/document/9764950</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/RADIOELEKTRONIKA54537.2022.9764950" target="_blank" >10.1109/RADIOELEKTRONIKA54537.2022.9764950</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep Learning Pipeline for Chromosome Segmentation

  • Original language description

    Chromosome segmentation is a challenging and time-consuming part of karyotyping and requires a high level of expertise. Computer segmentation algorithms still require the assistance of cytologists in more complicated cases with overlapping or touching chromosomes. Deep learning models have the potential to make the segmentation process completely automated, and their applications are currently actively re-searched. This paper proposes a segmentation pipeline by using deep learning models and traditional computer vision algorithms. This process can be split into four steps, in which we use U-Net architecture to remove any background noises of the metaphase image. Next, we use thresholding and skeletonization to extract and classify single chromosomes and chromosome clusters. As a final step, we use Mask R-CNN, for instance, segmentation on the overlapping and touching chromosomes, and apply test-time augmentation to improve the model's precision.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2022 32nd International Conference Radioelektronika (RADIOELEKTRONIKA)

  • ISBN

    978-1-7281-8686-3

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    197-201

  • Publisher name

    IEEE

  • Place of publication

    neuveden

  • Event location

    Košice

  • Event date

    Apr 21, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000856002200041