Algorithms for audio inpainting based on probabilistic nonnegative matrix factorization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F22%3APU146638" target="_blank" >RIV/00216305:26220/22:PU146638 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165168422004443" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165168422004443</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sigpro.2022.108905" target="_blank" >10.1016/j.sigpro.2022.108905</a>
Alternative languages
Result language
angličtina
Original language name
Algorithms for audio inpainting based on probabilistic nonnegative matrix factorization
Original language description
Audio inpainting, i.e., the task of restoring missing or occluded audio signal samples, usually relies on sparse representations or autoregressive modeling. In this paper, we propose to structure the spectrogram with nonnegative matrix factorization (NMF) in a probabilistic framework. First, we treat the missing samples as latent variables, and derive two expectation–maximization algorithms for estimating the parameters of the model, depending on whether we formulate the problem in the time- or time-frequency domain. Then, we treat the missing samples as parameters, and we address this novel problem by deriving an alternating minimization scheme. We assess the potential of these algorithms for the task of restoring short- to middle-length gaps in music signals. Experiments reveal great convergence properties of the proposed methods, as well as competitive performance when compared to state-of-the-art audio inpainting techniques.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20203 - Telecommunications
Result continuities
Project
<a href="/en/project/GA20-29009S" target="_blank" >GA20-29009S: Perceptually motivated restoration of highly degraded audio signals</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
SIGNAL PROCESSING
ISSN
1872-7557
e-ISSN
—
Volume of the periodical
neuveden
Issue of the periodical within the volume
206
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
1-10
UT code for WoS article
000922000100001
EID of the result in the Scopus database
2-s2.0-85146050781