All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma: A Retrospective Multicenter Study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU145368" target="_blank" >RIV/00216305:26220/23:PU145368 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.lww.com/investigativeradiology/Abstract/9900/Deep_Learning_for_Automatic_Bone_Marrow_Apparent.64.aspx" target="_blank" >https://journals.lww.com/investigativeradiology/Abstract/9900/Deep_Learning_for_Automatic_Bone_Marrow_Apparent.64.aspx</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1097/RLI.0000000000000932" target="_blank" >10.1097/RLI.0000000000000932</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma: A Retrospective Multicenter Study

  • Original language description

    Objectives: Diffusion-weighted magnetic resonance imaging plays an increasing role in patients with multiple myeloma. The objective of this study was to develop and test an algorithm for automatic pelvic bone marrow analysis from whole-body apparent diffusion coefficient maps in patients with multiple myeloma, by automatically segmentation of pelvic bones and subsequent extraction of objective, representative ADC measurements from each bone. Material and Methods: This retrospective multicentric study used 180 MRIs from 54 patients for developing an nnU-Net for automatic, individual segmentation of the right hip bone, the left hip bone, and the sacral bone. Precision of the automatic segmentation was tested on 15 wb-MRIs from 3 centers using the dice score. In three independent test-sets from three centers, which comprised a total of 312 whole-body MRIs, agreement between automatically extracted mean ADC values from the nnU-Net segmentation were compared to manual ADC-measurements by two radiologists. Bland-Altman plots were constructed, and absolute bias, relative bias to mean, limits of agreement, and coefficients of variation were calculated. In 56 patients with newly diagnosed multiple myeloma who had undergone bone marrow biopsy, ADC-values were correlated with biopsy results using Spearman correlation. Results: The ADC-nnU-Net achieved automatic segmentations with mean dice scores of 0.92, 0.93, and 0.85 for the right pelvis, the left pelvis, and the sacral bone, while the interrater experiment gave mean dice scores of 0.86, 0.86 and 0.77, respectively. The agreement between radiologists’ manual ADC measurements and automatic ADC measurements was as follows: the bias between the first rater and the automatic approach was 49 x10-6 mm2/s, 7 x10-6 mm2/s and -58 x10-6 mm2/s, and the bias between the second rater and the automatic approach was 12 x10-6 mm2/s, 2 x10-6 mm2/s and -66 x10-6 mm2/s for the right pelvis, the left pelvis, and the sacral bone. The bias betw

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    30204 - Oncology

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    INVESTIGATIVE RADIOLOGY

  • ISSN

    0020-9996

  • e-ISSN

    1536-0210

  • Volume of the periodical

    58

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    273-282

  • UT code for WoS article

    000958267800004

  • EID of the result in the Scopus database

    2-s2.0-85150040717