A planar Schrodinger-Newton system with Trudinger-Moser critical growth
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148074" target="_blank" >RIV/00216305:26220/23:PU148074 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00526-023-02463-0" target="_blank" >https://link.springer.com/article/10.1007/s00526-023-02463-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00526-023-02463-0" target="_blank" >10.1007/s00526-023-02463-0</a>
Alternative languages
Result language
angličtina
Original language name
A planar Schrodinger-Newton system with Trudinger-Moser critical growth
Original language description
In this paper, we focus on the existence of positive solutions to the following planar Schrodinger-Newton system with general critical exponential growth $-Delta u + u + phi u = f (u) in R^2, Delta phi = u^2 in R^2 $, where $f$ is an element of $ C^1( R, R)$. We apply a variational approach developed in [36] to study the above problem in the Sobolev space $H^1(R^2)$. The analysis developed in this paper also allows to investigate the relation between a Riesz-type of Schrodinger-Newton systems and a logarithmic-type of Schrodinger-Poisson systems. Furthermore, this approach can overcome some difficulties resulting from either the nonlocal term with sign-changing and unbounded logarithmic integral kernel, or the critical nonlinearity, or the lack of monotonicity of $ f(t)/t(3)$. We emphasize that it seems much difficult to use the variational framework developed in the existed literature to study the above problem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
ISSN
0944-2669
e-ISSN
1432-0835
Volume of the periodical
62
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
31
Pages from-to
1-31
UT code for WoS article
000956073200002
EID of the result in the Scopus database
2-s2.0-85150918811