Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148169" target="_blank" >RIV/00216305:26220/23:PU148169 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S002203962300030X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S002203962300030X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2023.01.023" target="_blank" >10.1016/j.jde.2023.01.023</a>
Alternative languages
Result language
angličtina
Original language name
Bound states of fractional Choquard equations with Hardy-Littlewood-Sobolev critical exponent
Original language description
We deal with the fractional Choquard equation where I-mu(x) is the Riesz potential, s is an element of (0, 1), 2s< N not equal 4s, 0 < mu < min{N, 4s} and 2* mu,s= 2N- mu/N-2s is the fractional critical Hardy-Littlewood-Sobolev exponent. By combining variational methods and the Brouwer degree theory, we investigate the existence and multiplicity of positive bound solutions to this equation when V(x) is a positive potential bounded from below. The results obtained in this paper extend and improve some recent works in the case where the coefficient V(x) vanishes at infinity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
2023
Issue of the periodical within the volume
355
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
219-247
UT code for WoS article
000973198700001
EID of the result in the Scopus database
2-s2.0-85147230219