All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Concentrating solutions for singularly perturbed fractional (N/s)-Laplacian equations with nonlocal reaction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU149856" target="_blank" >RIV/00216305:26220/24:PU149856 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001089369200001" target="_blank" >https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001089369200001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/forum-2023-0183" target="_blank" >10.1515/forum-2023-0183</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Concentrating solutions for singularly perturbed fractional (N/s)-Laplacian equations with nonlocal reaction

  • Original language description

    This paper is concerned with the following fractional (N/s)-Laplacian Choquard equation: epsilon(N )(-Delta)(s)(N/s)u + V(x)|u|(N/s-2)u = epsilon(mu)(1 / |x|(N-mu )& lowast;F(u) )f(u), x is an element of R-N,where (-Delta)(s)(N/s) denotes the (N/s)-Laplacian operator, 0 < mu < N, and V and f are continuous real functions satisfying some mild assumptions. Applying the weak growth conditions on the exponential critical nonlinearity f and without using the strictly monotone condition, we use some refined analysis and develop the arguments in the existing results to establish the existence of the ground state solution of the fractional (N/s)-Laplacian Choquard equation. Moreover, we also study the concentration phenomenon of the ground state solutions. As far as we know, our results seem to be new concerning the fractional (N/s)-Laplacian equation with the Choquard reaction.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    FORUM MATHEMATICUM

  • ISSN

    0933-7741

  • e-ISSN

    1435-5337

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    28

  • Pages from-to

    783-810

  • UT code for WoS article

    001089369200001

  • EID of the result in the Scopus database

    2-s2.0-85176213182