Concentrating solutions for singularly perturbed fractional (N/s)-Laplacian equations with nonlocal reaction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU149856" target="_blank" >RIV/00216305:26220/24:PU149856 - isvavai.cz</a>
Result on the web
<a href="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001089369200001" target="_blank" >https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001089369200001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/forum-2023-0183" target="_blank" >10.1515/forum-2023-0183</a>
Alternative languages
Result language
angličtina
Original language name
Concentrating solutions for singularly perturbed fractional (N/s)-Laplacian equations with nonlocal reaction
Original language description
This paper is concerned with the following fractional (N/s)-Laplacian Choquard equation: epsilon(N )(-Delta)(s)(N/s)u + V(x)|u|(N/s-2)u = epsilon(mu)(1 / |x|(N-mu )& lowast;F(u) )f(u), x is an element of R-N,where (-Delta)(s)(N/s) denotes the (N/s)-Laplacian operator, 0 < mu < N, and V and f are continuous real functions satisfying some mild assumptions. Applying the weak growth conditions on the exponential critical nonlinearity f and without using the strictly monotone condition, we use some refined analysis and develop the arguments in the existing results to establish the existence of the ground state solution of the fractional (N/s)-Laplacian Choquard equation. Moreover, we also study the concentration phenomenon of the ground state solutions. As far as we know, our results seem to be new concerning the fractional (N/s)-Laplacian equation with the Choquard reaction.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FORUM MATHEMATICUM
ISSN
0933-7741
e-ISSN
1435-5337
Volume of the periodical
36
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
28
Pages from-to
783-810
UT code for WoS article
001089369200001
EID of the result in the Scopus database
2-s2.0-85176213182