Existence and concentration properties for the 1-biharmonic equation with lack of compactness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU149291" target="_blank" >RIV/00216305:26220/23:PU149291 - isvavai.cz</a>
Result on the web
<a href="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001020988300001" target="_blank" >https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001020988300001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bulsci.2023.103275" target="_blank" >10.1016/j.bulsci.2023.103275</a>
Alternative languages
Result language
angličtina
Original language name
Existence and concentration properties for the 1-biharmonic equation with lack of compactness
Original language description
n this work, we are interested in the following 1-biharmonic problem with potentials � & epsilon;2 & UDelta;2 1u - & epsilon;& UDelta;1u + V(x) u |u| = K(x)f (u) in RN, u & ISIN; BL(RN), where N & GE; 3, & epsilon; > 0 is a positive parameter and V, K, f satisfy some proper conditions. Under the Nehari manifold technique, the Concentration-Compactness Principle and some analysis techniques, we establish the existence and concentration properties of ground state solutions to the 1-biharmonic equation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
BULLETIN DES SCIENCES MATHEMATIQUES
ISSN
0007-4497
e-ISSN
1952-4773
Volume of the periodical
186
Issue of the periodical within the volume
2023
Country of publishing house
FR - FRANCE
Number of pages
37
Pages from-to
1-37
UT code for WoS article
001020988300001
EID of the result in the Scopus database
2-s2.0-85160561857