All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multiplicity and concentration properties for (p,q)-Kirchhoff non-autonomous problems with Choquard nonlinearity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151077" target="_blank" >RIV/00216305:26220/24:PU151077 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001200435100001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001200435100001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.bulsci.2024.103398" target="_blank" >10.1016/j.bulsci.2024.103398</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multiplicity and concentration properties for (p,q)-Kirchhoff non-autonomous problems with Choquard nonlinearity

  • Original language description

    n this paper, we study the following (p,q)-Kirchhoff problem with Choquard nonlinearity: −(1+a∫RN|∇u|pdx)Δpu−(1+b∫RN|∇u|qdx)Δqu+Vε(x)(|u|p−2u+|u|q−2u)=(|x|−μ⁎F(u))f(u)inRN, where ε is a small positive parameter, a,b are positive constants, 1<p<q<N, q<2p, Δsu=div(|∇u|s−2∇u) with s∈{p,q} is the s-Laplacian, the potential V:RN→R is continuous, Vε(x)=V(εx), 0<μ[removed]

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    BULLETIN DES SCIENCES MATHEMATIQUES

  • ISSN

    0007-4497

  • e-ISSN

    1952-4773

  • Volume of the periodical

    191

  • Issue of the periodical within the volume

    103398

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    35

  • Pages from-to

    „“-„“

  • UT code for WoS article

    001200435100001

  • EID of the result in the Scopus database

    2-s2.0-85185613726