Concentration of solutions for non-autonomous double-phase problems with lack of compactness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151773" target="_blank" >RIV/00216305:26220/24:PU151773 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007/s00033-024-02290-z" target="_blank" >https://link.springer.com/article/10.1007/s00033-024-02290-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00033-024-02290-z" target="_blank" >10.1007/s00033-024-02290-z</a>
Alternative languages
Result language
angličtina
Original language name
Concentration of solutions for non-autonomous double-phase problems with lack of compactness
Original language description
The present paper is devoted to the study of the following double-phase equation (Formula presented.) where N≥2, 1<p<q<N, q<p∗ with p∗=NpN-p, μ:RN→R is a continuous non-negative function, με(x)=μ(εx), V:RN→R is a positive potential satisfying a local minimum condition, Vε(x)=V(εx), and the nonlinearity f:R→R is a continuous function with subcritical growth. Under natural assumptions on μ, V and f, by using penalization methods and Lusternik–Schnirelmann theory we first establish the multiplicity of solutions, and then, we obtain concentration properties of solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK
ISSN
0044-2275
e-ISSN
1420-9039
Volume of the periodical
75
Issue of the periodical within the volume
7
Country of publishing house
CH - SWITZERLAND
Number of pages
30
Pages from-to
1-30
UT code for WoS article
001272757400001
EID of the result in the Scopus database
2-s2.0-85199177638