All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Concentration of solutions for non-autonomous double-phase problems with lack of compactness

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151773" target="_blank" >RIV/00216305:26220/24:PU151773 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00033-024-02290-z" target="_blank" >https://link.springer.com/article/10.1007/s00033-024-02290-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00033-024-02290-z" target="_blank" >10.1007/s00033-024-02290-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Concentration of solutions for non-autonomous double-phase problems with lack of compactness

  • Original language description

    The present paper is devoted to the study of the following double-phase equation (Formula presented.) where N≥2, 1<p<q<N, q<p∗ with p∗=NpN-p, μ:RN→R is a continuous non-negative function, με(x)=μ(εx), V:RN→R is a positive potential satisfying a local minimum condition, Vε(x)=V(εx), and the nonlinearity f:R→R is a continuous function with subcritical growth. Under natural assumptions on μ, V and f, by using penalization methods and Lusternik–Schnirelmann theory we first establish the multiplicity of solutions, and then, we obtain concentration properties of solutions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK

  • ISSN

    0044-2275

  • e-ISSN

    1420-9039

  • Volume of the periodical

    75

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    30

  • Pages from-to

    1-30

  • UT code for WoS article

    001272757400001

  • EID of the result in the Scopus database

    2-s2.0-85199177638