All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multiple normalized solutions for fractional elliptic problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU150387" target="_blank" >RIV/00216305:26220/24:PU150387 - isvavai.cz</a>

  • Result on the web

    <a href="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001141871200001" target="_blank" >https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001141871200001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/forum-2023-0366" target="_blank" >10.1515/forum-2023-0366</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multiple normalized solutions for fractional elliptic problems

  • Original language description

    In this article, we are first concerned with the existence of multiple normalized solutions to the following fractional p-Laplace problem:{(-Delta)(p)(s)v + V(xi(x))|v|(p-2)v = lambda|v|(p-2)v + f(v) in R-N, integral(N)(R) |v|(p )dx = a(p),where a, xi > 0, p >= 2, lambda is an element of R is an unknown parameter that appears as a Lagrange multiplier, V : R-N -> [0, infinity) is a continuous function, and f is a continuous function with L-p-subcritical growth. We prove that there exists the multiplicity of solutions by using the Lusternik-Schnirelmann category. Next, we show that the number of normalized solutions is at least the number of global minimum points of V, as xi is small enough via Ekeland's variational principle.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    FORUM MATHEMATICUM

  • ISSN

    0933-7741

  • e-ISSN

    1435-5337

  • Volume of the periodical

    36

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    24

  • Pages from-to

    1225-1248

  • UT code for WoS article

    001141871200001

  • EID of the result in the Scopus database

    2-s2.0-85183687738