Multiple normalized solutions for fractional elliptic problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU150387" target="_blank" >RIV/00216305:26220/24:PU150387 - isvavai.cz</a>
Result on the web
<a href="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001141871200001" target="_blank" >https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001141871200001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/forum-2023-0366" target="_blank" >10.1515/forum-2023-0366</a>
Alternative languages
Result language
angličtina
Original language name
Multiple normalized solutions for fractional elliptic problems
Original language description
In this article, we are first concerned with the existence of multiple normalized solutions to the following fractional p-Laplace problem:{(-Delta)(p)(s)v + V(xi(x))|v|(p-2)v = lambda|v|(p-2)v + f(v) in R-N, integral(N)(R) |v|(p )dx = a(p),where a, xi > 0, p >= 2, lambda is an element of R is an unknown parameter that appears as a Lagrange multiplier, V : R-N -> [0, infinity) is a continuous function, and f is a continuous function with L-p-subcritical growth. We prove that there exists the multiplicity of solutions by using the Lusternik-Schnirelmann category. Next, we show that the number of normalized solutions is at least the number of global minimum points of V, as xi is small enough via Ekeland's variational principle.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FORUM MATHEMATICUM
ISSN
0933-7741
e-ISSN
1435-5337
Volume of the periodical
36
Issue of the periodical within the volume
5
Country of publishing house
DE - GERMANY
Number of pages
24
Pages from-to
1225-1248
UT code for WoS article
001141871200001
EID of the result in the Scopus database
2-s2.0-85183687738