Groundstates of the planar Schrodinger-Poisson system with potential well and lack of symmetry
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148502" target="_blank" >RIV/00216305:26220/23:PU148502 - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/groundstates-of-the-planar-schrodingerpoisson-system-with-potential-well-and-lack-of-symmetry/223939198AEDB4F9B7DCB633917950DD" target="_blank" >https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/groundstates-of-the-planar-schrodingerpoisson-system-with-potential-well-and-lack-of-symmetry/223939198AEDB4F9B7DCB633917950DD</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/prm.2023.43" target="_blank" >10.1017/prm.2023.43</a>
Alternative languages
Result language
angličtina
Original language name
Groundstates of the planar Schrodinger-Poisson system with potential well and lack of symmetry
Original language description
The Schrodinger-Poisson system describes standing waves for the nonlinear Schrodinger equation interacting with the electrostatic field. In this paper, we are concerned with the existence of positive ground states to the planar Schrodinger-Poisson system with a nonlinearity having either a subcritical or a critical exponential growth in the sense of Trudinger-Moser. A feature of this paper is that neither the finite steep potential nor the reaction satisfies any symmetry or periodicity hypotheses. The analysis developed in this paper seems to be the first attempt in the study of planar Schrodinger-Poisson systems with lack of symmetry.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS
ISSN
0308-2105
e-ISSN
1473-7124
Volume of the periodical
117
Issue of the periodical within the volume
128
Country of publishing house
GB - UNITED KINGDOM
Number of pages
31
Pages from-to
1-31
UT code for WoS article
001007743400001
EID of the result in the Scopus database
2-s2.0-85161004862