Assessing Movement of Articulatory Organs in Patients with Parkinson’s Disease
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU148893" target="_blank" >RIV/00216305:26220/23:PU148893 - isvavai.cz</a>
Result on the web
<a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1_v2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2022_sbornik_1_v2.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Assessing Movement of Articulatory Organs in Patients with Parkinson’s Disease
Original language description
Hypokinetic dysarthria is a motor speech disorder often present during Parkinson’s disease. It affects the speech system, including articulatory abilities. There are several speech parameters describing this domain, so it is suggested to deal with their mutual comparison. This work aims to design and describe an algorithm for calculating the parameters of articulation, adapted for the Czech language, and then compare their discriminative power. The acoustic analysis of speech included in it is done via the Praat program and basic machine learning algorithms such as Expectation-Maximization, K-means and linear regression are used for the subsequent data processing. The Mann-Whitney U test, descriptive statistics and Random Forest machine learning model using cross-validation and balanced accuracy is used for evaluation. The results are scripts for automatic assessment of vowel space area, for calculating articulation parameters and for their evaluation. The outputs of the analysis of speech recording database prove that differences in articulation can indeed be observed between normal and dysarthric speech. Based on the mutual comparison of results, it is therefore proposed in the work which parameters are being appropriate for further dealing with this issue.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
<a href="/en/project/NU20-04-00294" target="_blank" >NU20-04-00294: Diagnostics of Lewy body diseases in prodromal stage based on multimodal data analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings I of the 28th Conference STUDENT EEICT 2022 General papers
ISBN
978-80-214-6029-4
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
243-246
Publisher name
Brno University of Technology, Faculty of Electrical Engineering and Communication
Place of publication
Brno
Event location
Brno
Event date
Apr 26, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—