License Plate Recognition on Low-Cost Devices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F23%3APU149746" target="_blank" >RIV/00216305:26220/23:PU149746 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
License Plate Recognition on Low-Cost Devices
Original language description
This paper presents a comprehensive approach to vehicle license plate recognition running on low-cost devices. Leveraging convolutional neural networks, we evaluate models like YOLOv7-tiny and YuNet for license plate detection, favoring YuNet's 1080×1080 resolution for the accuracy-computation trade-off. For license plate character recognition, we proposed a YOLOv4-tiny derivation model, achieving good accuracy and fast computation. The proposed approaches were validated on a test set from real traffic using Raspberry Pi 4 as the target computational device.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20202 - Communication engineering and systems
Result continuities
Project
<a href="/en/project/CK04000027" target="_blank" >CK04000027: Traffic controll system of new generation (SENDER)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2023 15th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
ISBN
979-8-3503-9328-6
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
28-32
Publisher name
IEEE Computer Society
Place of publication
neuveden
Event location
Gent, Belgium
Event date
Oct 30, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—