Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU149926" target="_blank" >RIV/00216305:26220/24:PU149926 - isvavai.cz</a>
Result on the web
<a href="https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.12961" target="_blank" >https://londmathsoc.onlinelibrary.wiley.com/doi/epdf/10.1112/blms.12961</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/blms.12961" target="_blank" >10.1112/blms.12961</a>
Alternative languages
Result language
angličtina
Original language name
Non-autonomous double phase eigenvalue problems with indefinite weight and lack of compactness
Original language description
In this paper, we consider eigenvalues to the following double phase problem with unbalanced growth and indefinite weight,-Delta pau-Delta qu=lambda m(x)|u|q-2uinRN,$$begin{equation*} hspace*{3pc}-Delta _pa u-Delta _q u =lambda m(x)|u|{q-2}u quad mbox{in} ,, mathbb {R}<^>N, end{equation*}$$where N > 2$N geqslant 2$, 1{0, 1}(mathbb {R}N, [0, +infty))$, a not equivalent to 0$a notequiv 0$ and m:RN -> R$m: mathbb {R}N rightarrow mathbb {R}$ is an indefinite sign weight which may admit non-trivial positive and negative parts. Here, Delta q$Delta _q$ is the q$q$-Laplacian operator and Delta pa$Delta _pa$ is the weighted p$p$-Laplace operator defined by Delta pau:=div(a(x)| backward difference u|p-2 backward difference u)$Delta _pa u:=textnormal {div}(a(x)|nabla u|{p-2} nabla u)$. The problem can be degenerate, in the sense that the infimum of a$a$ in RN$mathbb {R}N$ may be zero. Our main results distinguish between the cases p
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY
ISSN
0024-6093
e-ISSN
1469-2120
Volume of the periodical
56
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
22
Pages from-to
734-755
UT code for WoS article
001111715500001
EID of the result in the Scopus database
2-s2.0-85178443801