All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Critical planar Schrödinger–Poisson equations: existence, multiplicity and concentration

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU151494" target="_blank" >RIV/00216305:26220/24:PU151494 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s00209-024-03520-w" target="_blank" >https://link.springer.com/article/10.1007/s00209-024-03520-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00209-024-03520-w" target="_blank" >10.1007/s00209-024-03520-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Critical planar Schrödinger–Poisson equations: existence, multiplicity and concentration

  • Original language description

    In this paper, we are concerned with the study of the following 2-D Schrödinger–Poisson equation with critical exponential growth −ε^2delta u + V (x)u + ε−α (Iα ∗ |u|q )|u|q−2u = f (u), where ε > 0 is a parameter, Iα is the Riesz potential, 0 < α < 2, V ∈ C(R2, R), and f ∈ C(R, R) satisfies the critical exponential growth. By variational methods, we first prove the existence of ground state solutions for the above system with the periodic potential. Then we obtain that there exists a positive ground state solution of the above system concentrating at a global minimum of V in the semi-classical limit under some suitable conditions. Meanwhile, the exponential decay of this ground state solution is detected. Finally, we establish the multiplicity of positive solutions by using the Ljusternik–Schnirelmann theory.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MATHEMATISCHE ZEITSCHRIFT

  • ISSN

    0025-5874

  • e-ISSN

    1432-8232

  • Volume of the periodical

    307

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    25

  • Pages from-to

    1-25

  • UT code for WoS article

    001238245700005

  • EID of the result in the Scopus database

    2-s2.0-85195398625