Concentration of ground state solutions for supercritical zero-mass (N, q)-equations of Choquard reaction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU152574" target="_blank" >RIV/00216305:26220/24:PU152574 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00209-024-03620-7" target="_blank" >https://doi.org/10.1007/s00209-024-03620-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00209-024-03620-7" target="_blank" >10.1007/s00209-024-03620-7</a>
Alternative languages
Result language
angličtina
Original language name
Concentration of ground state solutions for supercritical zero-mass (N, q)-equations of Choquard reaction
Original language description
We study the following singularly perturbed (N, q)-equation of Choquard type (Formula presented.) where Δru=div(|∇u|r-2∇u) denotes the usual r-Laplacian operator with r∈{q,N} and 1<q[removed]0 is a sufficiently small parameter, K∈C0(RN) satisfies some technical assumptions, 0<μ<N and F is the primitive of f that fulfills a supercritical exponential growth in the Trudinger–Moser sense. Due to the new version of Trudinger–Moser type inequality introduced in Shen and Rădulescu (Zero-mass (N, q)-Laplacian equation with Stein-Weiss convolution part in RN: supercritical exponential case. submitted), we aim to derive the existence and concentration of ground state solutions for the given equation using variational method, where the concentrating phenomenon appears at the maximum point set of K as ε→0+.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATISCHE ZEITSCHRIFT
ISSN
0025-5874
e-ISSN
1432-1823
Volume of the periodical
308
Issue of the periodical within the volume
66
Country of publishing house
DE - GERMANY
Number of pages
46
Pages from-to
„“-„“
UT code for WoS article
001343396100002
EID of the result in the Scopus database
2-s2.0-85207845398