Shedding Light on Cardiac Excitation: In Vitro and In Silico Analysis of Native Ca<SUP>2+</SUP> Channel Activation in Guinea Pig Cardiomyocytes Using Organic Photovoltaic Devices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU156032" target="_blank" >RIV/00216305:26220/24:PU156032 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/10473191" target="_blank" >https://ieeexplore.ieee.org/document/10473191</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TBME.2024.3358240" target="_blank" >10.1109/TBME.2024.3358240</a>
Alternative languages
Result language
angličtina
Original language name
Shedding Light on Cardiac Excitation: In Vitro and In Silico Analysis of Native Ca<SUP>2+</SUP> Channel Activation in Guinea Pig Cardiomyocytes Using Organic Photovoltaic Devices
Original language description
Objective: This study aims to explore the potential of organic electrolytic photocapacitors (OEPCs), an innovative photovoltaic device, in mediating the activation of native voltage-gated Cav1.2 channels (I-Ca,I-L) in Guinea pig ventricular cardiomyocytes. Methods: Whole-cell patch-clamp recordings were employed to examine light-triggered OEPC mediated I-Ca,I-L activation, integrating the channel's kinetic properties into a multicompartment cell model to take intracellular ion concentrations into account. A multidomain model was additionally incorporated to evaluate effects of OEPC-mediated stimulation. The final model combines external stimulation, multicompartmental cell simulation, and a patch-clamp amplifier equivalent circuit to assess the impact on achievable intracellular voltage changes. Results: Light pulses activated I-Ca,I-L, with amplitudes similar to voltage-clamp activation and high sensitivity to the L-type Ca2+ channel blocker, nifedipine. Light-triggered I-Ca,I-L inactivation exhibited kinetic parameters comparable to voltage-induced inactivation. Conclusion: OEPC-mediated activation of I-Ca,I-L demonstrates their potential for nongenetic optical modulation of cellular physiology potentially paving the way for the development of innovative therapies in cardiovascular health. The integrated model proves the light-mediated activation of I-Ca,I-L and advances the understanding of the interplay between the patch-clamp amplifier and external stimulation devices. Significance: Treating cardiac conduction disorders by minimal-invasive means without genetic modifications could advance therapeutic approaches increasing patients' quality of life compared with conventional methods employing electronic devices.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20600 - Medical engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING
ISSN
0018-9294
e-ISSN
1558-2531
Volume of the periodical
71
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
1980-1992
UT code for WoS article
001230139500002
EID of the result in the Scopus database
2-s2.0-85188420084