All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Shedding Light on Cardiac Excitation: In Vitro and In Silico Analysis of Native Ca<SUP>2+</SUP> Channel Activation in Guinea Pig Cardiomyocytes Using Organic Photovoltaic Devices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F24%3APU156032" target="_blank" >RIV/00216305:26220/24:PU156032 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/10473191" target="_blank" >https://ieeexplore.ieee.org/document/10473191</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TBME.2024.3358240" target="_blank" >10.1109/TBME.2024.3358240</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Shedding Light on Cardiac Excitation: In Vitro and In Silico Analysis of Native Ca<SUP>2+</SUP> Channel Activation in Guinea Pig Cardiomyocytes Using Organic Photovoltaic Devices

  • Original language description

    Objective: This study aims to explore the potential of organic electrolytic photocapacitors (OEPCs), an innovative photovoltaic device, in mediating the activation of native voltage-gated Cav1.2 channels (I-Ca,I-L) in Guinea pig ventricular cardiomyocytes. Methods: Whole-cell patch-clamp recordings were employed to examine light-triggered OEPC mediated I-Ca,I-L activation, integrating the channel's kinetic properties into a multicompartment cell model to take intracellular ion concentrations into account. A multidomain model was additionally incorporated to evaluate effects of OEPC-mediated stimulation. The final model combines external stimulation, multicompartmental cell simulation, and a patch-clamp amplifier equivalent circuit to assess the impact on achievable intracellular voltage changes. Results: Light pulses activated I-Ca,I-L, with amplitudes similar to voltage-clamp activation and high sensitivity to the L-type Ca2+ channel blocker, nifedipine. Light-triggered I-Ca,I-L inactivation exhibited kinetic parameters comparable to voltage-induced inactivation. Conclusion: OEPC-mediated activation of I-Ca,I-L demonstrates their potential for nongenetic optical modulation of cellular physiology potentially paving the way for the development of innovative therapies in cardiovascular health. The integrated model proves the light-mediated activation of I-Ca,I-L and advances the understanding of the interplay between the patch-clamp amplifier and external stimulation devices. Significance: Treating cardiac conduction disorders by minimal-invasive means without genetic modifications could advance therapeutic approaches increasing patients' quality of life compared with conventional methods employing electronic devices.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20600 - Medical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING

  • ISSN

    0018-9294

  • e-ISSN

    1558-2531

  • Volume of the periodical

    71

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    1980-1992

  • UT code for WoS article

    001230139500002

  • EID of the result in the Scopus database

    2-s2.0-85188420084