All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Constraint minimizers of mass critical fractional Kirchhoff equations: concentration and uniqueness

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F25%3APU156196" target="_blank" >RIV/00216305:26220/25:PU156196 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience-iop-org.ezproxy.lib.vutbr.cz/article/10.1088/1361-6544/adbc3b/pdf" target="_blank" >https://iopscience-iop-org.ezproxy.lib.vutbr.cz/article/10.1088/1361-6544/adbc3b/pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6544/adbc3b" target="_blank" >10.1088/1361-6544/adbc3b</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Constraint minimizers of mass critical fractional Kirchhoff equations: concentration and uniqueness

  • Original language description

    This paper focuses on the constraint minimization problem associated with the fractional Kirchhoff equation { ( a + b ∫ ℝ N | ( − Δ ) s 2 u | 2 d x ) ( − Δ ) s u + | x | 2 u = μ u + β u 8 s N + 1 in ℝ N , [ 6 p t ] ∫ ℝ N | u | 2 d x = 1 , where s ∈ ( N / 4 , 1 ) , N = 2 , 3 , a ⩾ 0 , b > 0 are constants, μ ∈ R is the corresponding Lagrange multiplier and ( − Δ ) s is the fractional Laplacian operator, 8 s / N + 1 is the corresponding mass critical exponent. The purpose of this paper is threefold: to establish the existence and non-existence of the L2-constraint minimizers to the degenerate fractional Kirchhoff problem, that is a = 0, to prove some classical concentration behaviors of constraint minimizers and to reveal the local uniqueness of constraint minimizers of above problem under double nonlocal effect. In particular, we will give some energy estimates, decay estimates and uniform regularity to find that the maximal point of constraint minimizer concentrates on the bottom point of the homogeneous potential. Furthermore, we introduce several new techniques based on the combination of the localization method of ( − Δ ) s and by establishing the nonlocal Pohozăev identity, which allow us to get over some new challenges due to the nonlocal property of ( − Δ ) s and the fact that ∫ R N | ( − Δ ) s 2 u | 2 d x ( − Δ ) s u does not vanish as a ↘ 0 . We believe that these techniques will have some potential applications in various related problems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2025

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    NONLINEARITY

  • ISSN

    0951-7715

  • e-ISSN

    1361-6544

  • Volume of the periodical

    38

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    46

  • Pages from-to

    „“-„“

  • UT code for WoS article

    001443870900001

  • EID of the result in the Scopus database

    2-s2.0-105000363566