Constraint minimizers of mass critical fractional Kirchhoff equations: concentration and uniqueness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F25%3APU156196" target="_blank" >RIV/00216305:26220/25:PU156196 - isvavai.cz</a>
Result on the web
<a href="https://iopscience-iop-org.ezproxy.lib.vutbr.cz/article/10.1088/1361-6544/adbc3b/pdf" target="_blank" >https://iopscience-iop-org.ezproxy.lib.vutbr.cz/article/10.1088/1361-6544/adbc3b/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6544/adbc3b" target="_blank" >10.1088/1361-6544/adbc3b</a>
Alternative languages
Result language
angličtina
Original language name
Constraint minimizers of mass critical fractional Kirchhoff equations: concentration and uniqueness
Original language description
This paper focuses on the constraint minimization problem associated with the fractional Kirchhoff equation { ( a + b ∫ ℝ N | ( − Δ ) s 2 u | 2 d x ) ( − Δ ) s u + | x | 2 u = μ u + β u 8 s N + 1 in ℝ N , [ 6 p t ] ∫ ℝ N | u | 2 d x = 1 , where s ∈ ( N / 4 , 1 ) , N = 2 , 3 , a ⩾ 0 , b > 0 are constants, μ ∈ R is the corresponding Lagrange multiplier and ( − Δ ) s is the fractional Laplacian operator, 8 s / N + 1 is the corresponding mass critical exponent. The purpose of this paper is threefold: to establish the existence and non-existence of the L2-constraint minimizers to the degenerate fractional Kirchhoff problem, that is a = 0, to prove some classical concentration behaviors of constraint minimizers and to reveal the local uniqueness of constraint minimizers of above problem under double nonlocal effect. In particular, we will give some energy estimates, decay estimates and uniform regularity to find that the maximal point of constraint minimizer concentrates on the bottom point of the homogeneous potential. Furthermore, we introduce several new techniques based on the combination of the localization method of ( − Δ ) s and by establishing the nonlocal Pohozăev identity, which allow us to get over some new challenges due to the nonlocal property of ( − Δ ) s and the fact that ∫ R N | ( − Δ ) s 2 u | 2 d x ( − Δ ) s u does not vanish as a ↘ 0 . We believe that these techniques will have some potential applications in various related problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2025
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
NONLINEARITY
ISSN
0951-7715
e-ISSN
1361-6544
Volume of the periodical
38
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
46
Pages from-to
„“-„“
UT code for WoS article
001443870900001
EID of the result in the Scopus database
2-s2.0-105000363566